2018 “ GPU高性能计算及深度学习理论与实战 ”

发布时间:2018-03-12 17:21:49

 中科院计算所烟台分所

烟台中科网络技术研究所

 

深度学习理论与实战及GPU高性能计算解决方案应用”

高级培训班的通知

各有关学校:

着人工智能(AI)特别是深度学习(Deep Learning)近年来的飞速发展,在多个领域的成功应用,已经成为当前学术界和各行业最炙手可热的研究应用方向。不仅广泛应用于搜索引擎、电子商务、社交网络等互联网服务,并且在计算视觉、自然语言处理、金融、生物医药等行业AI的研究与应用也呈现爆发式增长。同时由于深度学习(Deep Learning)需要处理的海量数据非常庞大,GPU(CUDA、OPENACC、OPENCL)计算在人工智能/深度学习领域展现出相比传统CPU计算巨大的优势,极大的提高了计算能力,降低时间成本,已经成为深度学习计算的首选解决方案。为加强AI技术的创新发展和应用,培养社会急缺的深度学习专业人才中国科学院计算技术研究所烟台分所特别邀请深度学习领域的专家,举办深度学习理论与实战及GPU高性能计算解决方案应用“高级培训班

 

主办单位: 中国科学院计算技术研究所烟台分所  烟台中科网络技术研究所

承办单位: 北京中科云畅应用技术研究院

培训时间地点:   2018 4月13日 —— 2018年4月16日        济南(山东大学)

                                      (第一天报,培训三天)

培训费用:每人 3900元(含报名费、培训费、资料费),食宿可统一安排,费用自理。

                            

培训目标:通过讲授机器学习和深度学习理论及算法,让学员对机器学习、深度学习技术方法有深入的理解,同时学习深度学习开源平台的开发方法,学习并实践深度学习GPU计算解决方案。

 

培训对象:院校计算机专业、网络通信专业、电子工程专业、信息计算科学专业、统计学专业等对AI /深度学习技术及研发感兴趣的老师、研究生等。相关从事大数据、数据挖掘、机器学习、计算视觉、自然语言处理、人机交互等领域研发的单位的技术部门、IT企业的工程师、研发负责人、算法工程师等。

 

培训方式:  1、培训讲座;     2、高性能计算环境下的上机实操;   3、专题小组研讨与案例讲解分析结合

 

报名办法:请各有关部门统一组织本地区行政、企事业单位报名参加会议,各单位也可直接报名参加。报名回执表请传真至会务处。

                                                                                                                                                                                                             

 

 

附件

 

一、主讲专家:

主讲专家来自中科院及高校的深度学习和高性能计算高级专家,拥有丰富的科研及工程技术经验,长期从事计算领域国家重大项目研究,具有资深的技术底蕴和专业背景。

 

二、培训内容:

                        模块一:深度学习理论与实战

一、人工智能、机器学习、深度学习的历史和基本思想

1,人工智能概述、机器学习概述及基本思想

2,深度学习的前生今世、发展趋势

3,深度学习的主要模型及应用场景

二、生成性对抗网络GAN

1, GAN的理论知识   

2, GAN经典模型:

CGAN

LAPGAN

DCGAN

3,GAN实际应用: DCGAN提高模糊图片分辨率

三、卷积神经网络

1,CNN卷积神经网络:

卷积层(一维卷积、二维卷积)

池化层(均值池化、最大池化)

全连接层    

激活函数层    

Softmax层

2,CNN卷积神经网络改进:

R-CNN (SPPNET)  

Fast-R-CNN  

Faster-R-CNN (YOLO、SSD)

3, CNN应用案例:

CNN与手写数字集分类

YOLO实现目标检测

PixelNet原理与实现

利用卷积神经网络做图像风格结合

四、循环神经网络

1, RNN循环神经网络:

梯度计算

BPTT

2, RNN循环神经网络改进:

LSTM      

Bi-RNN 

3,RNN实际应用: Seq2Seq的原理与实现    

五、强化学习

1, 强化学习的原理;

2, RL实际应用;

六、迁移学习

1,迁移学习的理论概述;

2,迁移学习的常见方法:

特征、实例、数据、深度迁移、强化迁移、研究案例;

                        模块二:AI+HPC、GPU高性能及深度学习

一、 GPU通用计算

1、高性能计算的应用场景和实际意义;

2、CPU/GPU体系结构对比介绍:

流水线、多核、缓存、访存、通信模型、分支预测等;

3HPC场景:GPU加速性能计算

4、AI场景:GPU加速深度学习;

5、AI+HPC场景:

深度学习应用耗时分析

矩阵卷积

对应的GPU解决方案

二、 GPU高性能计算

1、搭建高性能计算平台,CUDA开发环境搭建和工具配置

2CUDA基础:

API、数据并行、线程模型、存储模型、控制、同步、并发和通信、加速比;

3、CUDA优化进阶

线程组织调度,访存优化,数据传输,原子操作;

4、GPU并行计算模式及案例分析

5、CUDA 9特性;

GPU高性能上机实操:

1、向量加

2、深度学习瓶颈函数的GPU实现:矩阵乘,卷积

 GPU深度学习

1、搭建深度学习平台,深度学习显卡选型

2、Pascal架构和Volta架构

3、深度学习GPU解决方案:

3.1基于GPU的交互式深度学习训练平台DIGITS

3.2深度学习框架的GPU加速:TensorFlow,Caffe等

3.3 NVIDIA深度学习SDK:cuDNN,TensorRT,NCCL

GPU深度学习上机实操:

1、Caffe,TensorFlow等通用深度学习框架GPU加速库cuDNN的使用;

2、深度学习推理引擎TensorRT的使用

 

三、颁发证书:

学员经培训考试合格后可以获得:由中国科学院计算技术研究所烟台分所颁发的培训证书。

备注:请学员带身份证复印件一张(办理证书使用)

 

四、报名方式:

       联系人:冯老师

报名电话: 13717604109            

报名邮箱: 3227283712@qq.com 

备注:此次培训全程在山东大学机房上课,每人一台电脑,理论结合案例全程上机实操,限额人数35人,如要参会请提前联系冯老师并尽快报名!

会议时间2018-04-13至2018-04-16
会议地点山东济南
主办单位中国科学院计算技术研究所烟台分所
联系人冯老师
电话13717604109
Email3227283712@qq.com
会议规模31-50人
官方网址http://www.int-yt.com

声明:

1.以上会议非科学网主办或承办会议,科学网会议频道会议来自于互联网方便用户了解行业信息,如需参会、汇款、获取邀请函或会议日程,请与主办单位联系
2.部分会议信息来自互联网,由于网络的不确定性,科学网对所发布的信息不承担真实性的鉴别工作,请谨慎选择汇款参会,若您发现信息有误,请联系010-62580809纠错
3.更多服务信息请点击这里
推荐会议